
Benjamin Ledoux

Prof. Ozgur Izmirli

COM312

December 16, 2022

Estimating Multiple Fundamental Frequencies

 My final project was implementing my own method of estimating multiple concurrent

fundamental frequencies, based on my research done for the paper. The main() function goes

through all of the provided sound files of different chords, plugging each one into the primary

function. The project is split up into two primary functions. In order to run the project, make sure

the sounds folder is included in the file path in MATLAB so the main() function can access

the sound files. If you want to test other audio files, just change the name of the file in

estFundFreq(signal) to whatever you want. I tested a file that goes through the different

notes in a chord with varying levels of concurrency (playing notes D, F, A, D and F, F and A, D

and A, and finally all three at once), as well as a set of many different chords being played. The

results were promising. There are some small errors in the estimation, and I attempted to fix

them with a post-processing filter that would eliminate notes that only existed for a single frame.

This seemed to help a little bit but left a few errors, most likely a result of the

find_fund_mult() function. Overall I am happy with the implementation. It draws on

information gathered in my research, has a strong output, and is based on what I’ve learned this

semester.

find_fund_mult(spectrum, sFreq, fft_size)

This function takes in a frame of a spectrogram performed on a sound file, the sampling

rate of the sound file, and the size of the Fast Fourier Transform performed. Starting from the

lower frequencies, it goes through the frame and identifies peaks in amplitude, marking the

frequencies associated with those peaks as significant frequencies (audible sound). The resulting

list of significant frequencies is then analyzed and any frequency determined not to be double

that of another element (a harmonic partial) if concatenated into a new list. Due to the nature of

performing a FFT, frequencies within a musical quarter tone of a partial of another frequency are

considered partials. This method does not take amplitude into account, and thus cannot detect

fundamental frequencies that overlap with partials of other fundamental frequencies (a sound

signal with F0’s at 100 Hz, 150 Hz, and 200 Hz will return a list of 100 Hz and 150 Hz).

estFundFreq(signal)

This function takes in a sound file, finds the spectrogram of the file, then uses

find_fund_mult() on each frame of the spectrogram. The results are concatenated to a

matrix of fundamental frequencies, FUND, where each F0 is assigned to its own associated

column (new F0’s create new columns). The result is a matrix of fundamental frequencies

ordered as they appear, with the rows denoting each frame of the spectrogram (a header vector is

made to easily determine the associated columns of each F0). Wherever a fundamental frequency

is not present in the file, a 0 serves as a placeholder.

The FUND matrix is then converted into a matrix of MIDI notes, which is then filtered to

omit frequencies deemed out-of-range (in this case, A5 was determined to be the upper limit,

non-inclusive). The MIDI matrix is converted into a set of vectors denoting the MIDI number of

the note, the start time in seconds, and the duration in seconds. It is filtered so consecutive notes

will be combined into longer notes. Notes are added by going through each column and

processing the integers present, meaning the final vectors will be stacked and ordered by MIDI

note in order of appearance, not ordered by time. The vectors are then incorporated into a matrix,

which is then filtered to omit non-valid notes (-Inf) and notes that only last for a single frame of

the spectrogram to reduce short-term errors. The resulting matrix is readable by

matrix2midi(), converted into a MIDI object, and written to a MIDI file using the name of

the original sound file.

It should be noted that the large blocks of commented-out code are the implementation of

a direct approach of turning the FUND matrix into an audio file using generate_note(),

hence the file’s presence in the project folder. This produced some splicing issues where between

each generated note, the length of which were determined by the width of the spectrogram, a

spike in white noise was present. A fix was attempted to combine consecutive notes before

generating them, however the MIDI approach proved much better in the end.

